100=(5t)^2+5

Simple and best practice solution for 100=(5t)^2+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=(5t)^2+5 equation:



100=(5t)^2+5
We move all terms to the left:
100-((5t)^2+5)=0
We get rid of parentheses
-5t^2-5+100=0
We add all the numbers together, and all the variables
-5t^2+95=0
a = -5; b = 0; c = +95;
Δ = b2-4ac
Δ = 02-4·(-5)·95
Δ = 1900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1900}=\sqrt{100*19}=\sqrt{100}*\sqrt{19}=10\sqrt{19}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{19}}{2*-5}=\frac{0-10\sqrt{19}}{-10} =-\frac{10\sqrt{19}}{-10} =-\frac{\sqrt{19}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{19}}{2*-5}=\frac{0+10\sqrt{19}}{-10} =\frac{10\sqrt{19}}{-10} =\frac{\sqrt{19}}{-1} $

See similar equations:

| 9x+3/6=11 | | (2x+59)=0 | | X/18+x/27=x/30+32 | | (3x-16)(2x+59)=0 | | (3x-16)=0 | | 4.5(4x+6)=-3x-8 | | 41/2(4x+6)=-3x-8 | | 54x2+51x+7=0 | | (11+1i)(2−4i)=0 | | k^2-11k-24=0 | | k2-5k+24=0 | | 3.14×6.25×h=6.28×h+39.26 | | 7-(6x-10)=2x-27 | | 12–(12p–2p)=0 | | 12p-5-(120+3p)=0 | | 16m+8=4(2m-10) | | 25k+59=5(5k+10) | | 3.5+x=-2.6 | | 13(x-1)=11x-25x=6 | | 15x+140+7x+266=560 | | -(10x-3x-4)=-3-(12x-12-3x) | | 5.5+y=9.0 | | 2(d-4d-15+7)=2(d+8) | | 4+9(x+6)=-4x-5(x-8) | | -2(x-5)+5x+2=-9 | | 11x-2(3x-5)=4x+6 | | 6t+2=t+8+t-6 | | 30=a(1-0)^2+14 | | 3x-1+17=4x+8 | | –4.5(w+4)=6w–7.5 | | 12a-7=-16 | | x+x*0.1=61350 |

Equations solver categories